Space Shuttle Challenger
At 11:39 am EST on January 28, 1986, just 73.124 seconds after launch and at an altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts, including high school teacher Christa McAuliffe, were lost. The expression on the face of McAuliffe’s mother as she watched the demise of her daughter nine miles overhead haunts me to this day. The Challenger broke up because hot exhaust gasses in the failing SRB leaked out from between the segments of its hull, splashing across the body of the external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting the fuel and driving the tank forward to smash into the liquid oxygen tank above it. At the same time the SRB detached from its aft strut and rotated around its forward strut. Its nose punctured the liquid oxygen tank. These aberrant force vectors caused the entire craft, moving well above mach 1.5, to rotate against the airstream. Aerodynamic forces quickly tore everything to shreds.
Between the circular segments of the SRB there were two concentric synthetic rubber O-rings. When the segments were bolted together the O-rings were compressed, forming a tight seal that the exhaust gasses should not have been able to penetrate. But on the evening before the launch, the temperature on the launch pad got down to 17°F, 23 degrees below the O-rings’ minimum specified temperature and 33 degrees lower than any previous launch. As a result, the O-rings grew too stiff to properly block the hot gasses. Upon ignition of the SRB there was a pressure pulse as the hot gasses rapidly accumulated. The segments of the booster ballooned outward and relaxed the compression on the O-rings. The stiffness of the O-rings prevented them from keeping the seal tight, so some of the hot gasses leaked through and vaporized the O-rings across 70 degrees of arc.
The engineers at Morton Thiokol who designed the SRB had known that there were problems with the O-rings, and they had reported those problems to managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings from previous launches had been damaged in similar ways, though not enough to be catastrophic. The coldest launch had experienced the most damage. The engineers had designed a repair for the problem, but implementation of that repair had been long delayed.
The engineers suspected that the O-rings stiffened when cold. They also knew that temperatures for the Challenger launch were colder than any previous launch and well below the red-line. In short, the engineers knew that the risk was too high. The engineers acted on that knowledge. They wrote memos raising giant red flags. They strongly urged Thiokol and NASA managers not to launch. In an eleventh-hour meeting held just hours before the launch, those engineers presented their best data. They raged, and cajoled, and protested. But in the end, the managers ignored them.
When the time for launch came, some of the engineers refused to watch the broadcast because they feared an explosion on the pad. But as the Challenger climbed gracefully into the sky they began to relax. Moments before the destruction, as they watched the vehicle pass through Mach 1, one of them said that they’d “dodged a bullet.”
Despite all the protest and memos, and urgings of the engineers, the managers believed they knew better. They thought the engineers were overreacting. They didn’t trust the engineers’ data or their conclusions. They launched because they were under immense financial and political pressure. They hoped everything would be just fine.
These managers were not merely foolish, they were criminal. The lives of seven good men and women, and the hopes of a generation looking toward space travel, were dashed on that cold morning because those managers set their own fears, hopes, and intuitions above the words of their own experts. They made a decision they had no right to make. They usurped the authority of the people who actually knew: the engineers.
But what about the engineers? Certainly the engineers did what they were supposed to do. They informed their managers and fought hard for their position. They went through the appropriate channels and invoked all the right protocols. They did what they could, within the system—and still the managers overrode them. So it would seem that the engineers can walk away without blame. But sometimes I wonder whether any of those engineers lay awake at night, haunted by that image of Christa McAuliffe’s mother, and wishing they’d called Dan Rather.
(Source: The Clean Coder Preface)